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Optimal control can be used to significantly improve multi-qubit gates in quantum information processing
hardware architectures based on superconducting circuit quantum electrodynamics. We apply this approach not
only to dispersive gates of two qubits inside a cavity, but, more generally, to architectures based on two-
dimensional �2D� arrays of cavities and qubits. For high-fidelity gate operations, simultaneous evolutions of
controls and couplings in the two coupling dimensions of cavity grids are shown to be significantly faster than
conventional sequential implementations. Even under experimentally realistic conditions speedups by a factor
of three can be gained. The methods immediately scale to large grids and indirect gates between arbitrary pairs
of qubits on the grid. They are anticipated to be paradigmatic for 2D arrays and lattices of controllable qubits.
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I. INTRODUCTION

Progress toward the goal of scalable quantum information
processing is currently concentrated in physical systems that
live at the intersection between quantum optics and solid
state physics. One of the most promising contenders are su-
perconducting circuits that couple qubits and microwave
resonators, a field now known as circuit quantum electrody-
namics �QED�. In the development of this field, early sug-
gestions to implement the Jaynes-Cummings model in the
solid state1–3 were followed by a seminal proposal4 to em-
ploy on-chip microwave resonators and couple them to ar-
tifical atoms in the form of superconducting qubits. Experi-
mental realizations soon followed,5 creating a solid-state
analog of conventional optical cavity QED.6 The tight con-
finement of the field mode and the large electric dipole mo-
ment of the “atom” yield extraordinary coupling strengths,
which has led to a variety of experimental achievements,
including: the Jaynes-Cummings model in the strong-
coupling regime,5,7,8 Rabi and Ramsey oscillations and dis-
persive qubit readout,9,10 generation of single photons11 and
Fock states,12,13 cavity-mediated coupling of two qubits,14,15

setups with three qubits,16 Berry’s phase,17 and the measure-
ment of the photon number distribution.18

The recent experimental progress in creating microwave
circuits with multiple qubits coupled to resonators estab-
lishes the need for efficient, high-fidelity multi-qubit quan-
tum gates and motivates the search for advanced architec-
tures for quantum information processing on the chip. The
most elementary situation to consider is two qubits inside a
cavity �transmission line resonator�. The mere presence of
the cavity induces a flip-flop �XY� type interaction between
the qubits, which may and has been used for entangling gate
operations.14 The XY interaction directly produces an iSWAP

two-qubit gate. Other gates �such as the CNOT� have to be
synthesized. While it is well-known how to do so using a
sequence of an iSWAP and single-qubit gates,19,20 there is a
lot of room for improvement in constructing faster gates
even for this basic situation. One way to go is to use resonant
two-qubit gates.21,22 The other approach is to keep the robust

dispersive XY interaction and to explore better pulse se-
quences using the tools of optimal control theory. This is the
approach we will follow in this paper.

When going beyond two qubits and connecting many qu-
bits into a quantum processor on a chip, it is crucial to aban-
don linear arrays and to extend the setup into the second
dimension. While there have been a number of schemes for
doing so in nearest-neighbor coupled two-dimensional �2D�
arrays, the presence of global coupling between qubits via
resonators adds a feature that has to be explored. Perhaps the
most straightforward route, recently introduced by some of
us,20 is to create a two-dimensional “cavity grid” of trans-
mission line resonators arranged in columns and rows
�Fig. 1�. The qubits are located at the intersections such that
each qubit feels the microwave field of two cavities. In this
way, qubits can be addressed and coupled. An interesting
feature specific to such a global coupling architecture is the
fact that two qubits placed anywhere on the grid can be
coupled via a third qubit sitting at the intersection of two
resonators, with an overhead that does not grow with the
system size. Again, while a sequential protocol for this ‘cou-
pling around the corner’ is known,20 we may ask for possible

FIG. 1. �Color online� The superconducting cavity grid,
�Ref. 20� with two layers of vertical �bottom� and horizontal
�top layer� transmission line resonators, coupled to qubits �small red
squares�. Two-qubit gates between qubits 1 and 3 are mediated
indirectly via qubit 2, employing the dispersive interaction inside
the two highlighted resonators.
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speedups acquired by more sophisticated pulse schemes.
Principles of optimal quantum control23 are currently es-

tablishing themselves as indispensible tools to steer quantum
systems in a robust, time-optimal or loss-avoiding way.24

Earlier examples of numerical optimal control can be found
in Ref. 25. Based on the gradient ascent pulse engineering
�GRAPE� approach,26 our toolbox of optimal control tech-
niques now allows the synthesis of quantum gates in a time
optimal27 or relaxation-optimized way, where the open sys-
tem may come in a Markovian28 or a non-Markovian
setting.29

In particular in superconducting qubits �recently reviewed
in Ref. 30�, the issue of improving qubit gates by optimal
control techniques is currently attracting increased attention
�see Refs. 31–36 for some of the approaches�. Here, we take
these ideas further by optimizing multiqubit gates in the set-
ting of circuit quantum electrodynamics. We will consider
both the standard two-qubit setup, as well as the three-qubit
configuration where interactions exist only between qubits 1
and 2 and qubits 2 and 3, while the gate is to be applied
between qubits 1 and 3. Note that the latter situation is of far
more general relevance than the cavity grid only. In fact, it
will become important whenever full global coupling �all
qubits couple to all others� is not available, which is the
expected situation for multiqubit circuits. Optimal control
techniques have already been successfully applied to other
three-qubit architectures, in both analytical37–39 and
numerical40 approaches.

The remainder of the paper is organized as follows: We
first provide more background on the cavity grid architecture
and our optimal control methods in Sec. II. Afterwards, we
go through a sequence of models of increasing sophistica-
tion, for which we discuss the results found using optimal
control. We look at two qubits in one cavity and three qubits
in two cavities �the cavity grid situation�. At first, in Sec. III,
we consider both of these situations in the setting of an “ide-
alized model” where we assume local control over all the
qubits. Later on in Sec. IV, we introduce a “realistic model,”
in which we take into account that a microwave pulse ap-
plied through a resonator will couple to both qubits, such that
some amount of local control is lost. In addition, in the real-
istic model, we will consider restrictions on the pulse ampli-
tudes. In all cases, we are interested in finding the minimum
time at which the optimized pulse sequence has fidelity unity
and we extract the speedup vs the known, sequential ap-
proach. We will discuss typical control sequences and also
present the evolution of entanglement between the qubits
during an optimized three-qubit scheme.

II. METHODS AND SETUP

A. Cavity grid

We briefly recount the basic setup of the two-dimensional
cavity grid.20 The idea is to have a grid of transmission line
resonators �horizontal and vertical, in two different layers�,
and to place qubits at the intersections, as depicted in Fig. 1.
Each qubit thus feels the microwave field of the two cavities
crossing at its location. It thus couples directly, via the stan-
dard dispersive XY-type interaction �1

x�2
x +�1

y�2
y �see Sec.

III�, to all of the qubits in both of these cavities. Qubit fre-
quencies are chosen distinct to provide for individual addres-
sability. an iSWAP gates can then be implemented by bringing
two qubits into mutual resonance �still detuned from the cou-
pling cavity�, evolving for an appropriate time, and bringing
them out of resonance again. For an n�n array of n2 qubits,
only n different frequencies are needed, which drastically
eases the restrictions for the size of the array vs the one-
dimensional case.

A crucial question, however, is how to couple two qubits
that are not part of the same cavity. In nearest-neighbor
coupled arrays, this would require a number of intermediate
an SWAP operations that grows with the size of the array. In
contrast, the overhead remains constant for the case of the
cavity grid. Assuming direct couplings exist between 1–2
and 2–3, then any two-qubit gate between 1 and 3 can be
implemented by first swapping the quantum information
from 1 to 2, then performing the desired operation, and fi-
nally swapping back. Thus, since any two qubits will share a
third qubit at the corner of the cavities to which they couple,
this provides a general, distance-independent coupling
scheme.

However, one of the disadvantages of such a straightfor-
ward pulse sequence is that the SWAP gate itself is not el-
ementary with respect to the XY interaction, which only
yields an iSWAP. Unfortunately, three an iSWAPs are needed
to compose one SWAP, of which two are necessary for the
“coupling around the corner” approach. Thus, this very im-
portant operation in the cavity grid architecture lends itself
naturally to potentially significant improvements via optimal
control techniques.

B. Our optimal control approach

The general framework in optimal control is to maximize
a figure of merit subject to steering a dynamic system ac-
cording to its equation of motion under experimentally ad-
missible controls. In quantum information processing, a con-
venient figure of merit often chosen is the trace fidelity of the
gate U�T� actually synthesized under the available controls at
some final time T with respect to the desired target unitary
gate Utarget. For n qubits and setting Nª2n the �squared�
trace fidelity is

Ftr
2
ª � 1

N
tr�Utarget

† U�T���2

.

Now, for closed quantum systems Schrödinger’s equation of
motion lifted to operator form reads

U̇ = − iHU ,

where the total Hamiltonian H is composed of the nonswit-
chable drift term Hd and control terms Hj governed by piece-
wise constant control amplitudes uj�tk� for tk� �0,T� so as to
give

H�tk� ª Hd + �
j

uj�tk�Hj .

Dividing the total time T into M intervals �tk
�of piecewise constant controls� with T=�k

M�tk, the gate
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U�T�=UMUM−1¯Uk¯U2U1 is made of components
Uk=exp�−iH�tk��tk�. Then the derivatives

�Ftr
2

�uj�tk�
=

− 2

N2 Re�tr�Utarget
† UMUM−1 ¯ Uk+1

� �i�tkHjUk�Uk−1 ¯ U2U1�tr�Utarget
† U�T����

can �with appropriate step size �r�0� readily be used for
recursive gradient schemes like

uj
�r+1��tk� = uj

�r��tk� + �r

�Ftr
2

�uj�tk�
, �1�

representing the simple setting of steepest ascent. Likewise,
conjugate gradient or Newton methods can be
implemented.26,41 Here we used the limited-memory
Broyden-Fletcher-Goldfarb-Shanno �LBFGS� variant of a
quasi-Newton approach, as sketched in the Appendix. We
refer to algorithms of this kind as GRAPE26 algorithms.

Spin and pseudospin systems are a particularly powerful
paradigm of quantum systems, in particular when they are
fully operator controllable, i.e., universal. For this to be the
case the drift and the control Hamiltonians have to generate
the full n-qubit unitary algebra su�2n� by way of
commutation.42–44 A simple example exploited in the stimu-
lated Raman adiabatic passage �STIRAP�45 scheme is the Lie
algebra of local control su�2� being generated by the Pauli
matrices �x �pulse� and �z �detuning�, whose commutator
gives �y and thus introduces phase sensitivity. In the instance
of the �realistic� two-qubit Hamiltonian examined in Sec. IV
�Eq. �3��, only different phase shifts �1��2 ensure full con-
trollability. In practice for universality it suffices that �i� all
qubits can be addressed selectively and �ii� that they form an
arbitrary connected graph of Ising-type coupling interactions.
More recent analyses revealed that even partially collective
controls maintain universality in different types of Ising or
Heisenberg coupled systems as long as the hardware archi-
tecture gives rise to Hamiltonians with no symmetries.46

III. IDEALIZED MODEL

In order to establish the lower limits on gate times in this
scheme, let us first consider an idealized model where the
control fields are unrestricted. A model which respects more
closely the limitations in current experiments will be consid-
ered in the following section. After adiabatic elimination of
the cavity mode,4 the effective qubit-qubit interaction Hamil-
tonian is of the form

Hint = �J��1
+�2

− + �1
−�2

+� =
�J

2
��1

x�2
x + �1

y�2
y� ,

where J is an effective coupling constant determined by the
qubit-cavity couplings and detunings. Evolution under Hint

for a time of T= 1
2J yields the so-called an iSWAP operation19

exp	− i
1

2J
Hint
 =�

1 0 0 0

0 0 − i 0

0 − i 0 0

0 0 0 1
� , �2�

universal two-qubit gate which can be considered the
“natural” gate of the coupling interaction.

A. Two qubits in a cavity

If the two coupled qubits are individually addressable by
resonant microwave fields of tunable amplitude and phase,
the total Hamiltonian in a frame rotating with the driving
fields is

Hideal
�2� �t� = Hint + �

i=1

2

���i
x�t��i

x + �i
y�t��i

y� ,

under the assumption that the two qubits are in resonance
�i.e., they are set to the same frequency, but distinct from the
cavity frequency�. Note that our simulations work within the
rotating-wave approximation and assume a sufficiently de-
tuned cavity that has already been eliminated. Thus, we ne-
glect both the Bloch-Siegert shift that would arise for ex-
tremely strong driving, as well as any ac Stark shift due to a
strong cavity population. In order to make the bilinear con-
trol form of the Hamiltonian more explicit, the microwave
fields are specified in terms of real and imaginary parts �i

x�t�
and �i

y�t�, respectively, rather than amplitude and phase.
Throughout this article the controls and J coupling are nor-
malized as frequencies rather than angular frequencies, with
the 2� factors written explicitly in the Hamiltonians �and
with 	=1�.

One approach to implement a general two-qubit gate is to
decompose it into a sequence of an iSWAP gates and local
operations, as discussed in Refs. 19 and 20. For example, a
CNOT gate can be created from two i SWAPs, while a SWAP

gate requires three. We refer to this as the “sequential” ap-
proach. In this section we assume that local operations can
be performed in a negligible time compared to the time re-
quired by the coupling evolution. Time-optimal pulse se-
quences for an arbitrary two-qubit gate can then be deter-
mined analytically via the Cartan decomposition of SU�4� as
in Refs. 47 and 48. The an iSWAP implementation suggested
in Eq. �2� is, unsurprisingly, already time-optimal. Time-
optimal pulse sequences for the SWAP and CNOT are provided
in Fig. 2. A comparison of the times required by the different
schemes is given in Table I—we find that even in this simple
case the SWAP and CNOT can be sped up by a factor of 2.

B. Three qubits in two cavities

We now consider two qubits, each in a separate cavity,
which are coupled indirectly via an additional “mediator”
qubit placed at the intersection of the cavities. If local con-
trols on all three qubits are available, the Hamiltonian is
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Hideal
�3� �t� =

�J

2
��1

x�2
x + �1

y�2
y + �2

x�3
x + �2

y�3
y�

+ �
i=1

3

���i
x�t��i

x + �i
y�t��i

y� .

Gates can be implemented between the indirectly coupled
qubits �1 and 3� in the sequential scheme via the SWAP op-
eration, as depicted in Fig. 3. For example, an iSWAP between
qubits 1 and 3 could be implemented as a sequence of seven
two-qubit an iSWAPs.

However, these indirect two-qubit gates embedded in a
three-qubit system can be implemented considerably faster
using optimized controls. The analytical methods used for
determining time-optimal two-qubit gates cannot be applied
here; instead we use the numerical techniques outlined in
Sec. II. For a fixed gate time, an initial pulse is chosen and
iterated until the GRAPE algorithm converges to a maximum
of the fidelity. This procedure is repeated for a range of dif-
ferent gate times, allowing us to estimate the minimal time.
Further details about the numerics are included in the Appen-
dix. A plot of maximum fidelity vs. gate time for the case of
an iSWAP13 gate is shown in Fig. 4. In this case we find that
a time of 1 /J is required to reach the threshold fidelity. Mini-
mal times for other indirect two-qubit gates are similarly

calculated and the results are included in Table I, alongside
the times required by the corresponding sequential schemes
of decomposition into two-qubit an iSWAPs.

In order to illustrate how the optimized indirect two-qubit
gates differ from the sequential schemes, we can consider the
entanglement between directly coupled qubits over the time
interval during which the controls are applied. For this we
use the logarithmic negativity,49 defined as

EN�
� = log2

�A
1,

where �A is the partial transpose, 
 · 
1 is the trace norm, and

 is the reduced density matrix of the two-qubit subsystem.
We choose the initial state �100� and apply the iSWAP13 op-
eration while observing the entanglement between qubit
pairs 1–2 and 2–3, illustrated in Fig. 5. In the sequential
scheme the mediator qubit is entangled either with qubit 1 or
qubit 3. In the optimized case, as one might expect, the me-
diator qubit is simultaneously entangled with both.

IV. REALISTIC MODEL

Allowing for unrestricted x and y control on each qubit
yields lower bounds on what implementation times are pos-
sible. However we would also like to consider a restricted
model of coupled superconducting qubits which is more fea-
sible in current experiments. We allow for individual tuning
of the qubit resonance frequencies �z controls�, but restrict
ourselves to a single microwave field �x control� per cavity,
where the microwave field is no longer required to have tun-
able phase.

TABLE I. Implementation times for a selection of direct and
indirect two-qubit gates in the idealized model: Tseq is the time
required by decomposing the gate into two-qubit an iSWAPs; Topt is
the time required by the optimal control sequence. The times
marked with an asterisk are determined numerically as the shortest
times in which the GRAPE algorithm can reach a fidelity of
1–10−5, with time resolution 0.05 /J. The time of 2.0 /J for the
sequential implementation of a CNOT13 is a special case, where the
two SWAPs in Fig. 3 can be replaced by an iSWAPs.20

Gate Tseq�1 /J� Topt�1 /J� Speedup factor

iSWAP12 0.5 0.5

CNOT12 1.0 0.5 2

SWAP12 1.5 0.75 2

iSWAP13 3.5 1.00� 3.50

CNOT13 2.0 1.00� 2.00

SWAP13 4.5 1.15� 3.91

FIG. 2. Analytical pulse sequences for time-optimal implemen-
tations of two-qubit gates: �a� the CNOT gate, where 1 is the control
qubit and 2 is the target qubit and �b� the SWAP gate.

FIG. 3. The standard decomposition of an indirect two-qubit
gate into direct two-qubit gates via the SWAP operation.

FIG. 4. �a� Maximum achievable fidelity as a function of pulse
duration in the three-qubit idealized model for an iSWAP13 gate. �b�
On a logarithmic scale we observe a sharp convergence to the
threshold fidelity of 1–10−5, where the algorithm terminates.
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A. Two qubits with restricted controls

Under these structural restrictions, the corresponding two-
qubit Hamiltonian is

Hreal
�2� �t� = Hint + �

i=1

2

��i�t��i
z + ���t���1

x + �2
x� , �3�

where ��t� is the amplitude of the microwave field and �i�t�
are the detunings of the qubit frequencies from the micro-
wave carrier frequency. We consider two possible cases for
the control functions: �i� the controls are unrestricted, or �ii�
the controls are restricted to the following ranges

��i�t�� � �max = 1000 MHz,

���t�� � �max = 50 MHz, �4�

where the coupling constant was taken to be J=21 MHz �as
in Ref. 20� in our numerical examples. Furthermore, in case
�ii� we require that the controls start and end at zero with a
maximum rise time of 4ns, which should be feasible in cur-
rent experiments.21 In case �i� the results from Sec. III A still
apply—we need only to rewrite the local x and y pulses in

terms of our new controls. For instance a 90° x rotation on
the first qubit can be decomposed as

R1
x�90°� = R2

z�− 180°�R1,2
x �45°�R2

z�180°�R1,2
x �45°� ,

and the other local x and y pulses can be similarly decom-
posed. Thus, the two-qubit times in Table I also hold for this
case. In particular, this means that case �i� also yields the
optimum times for an experimental setup with both x and y
pulses available �variable phase of the microwave drive� and
without restrictions on the local gate controls. In case �ii� the
analytical methods are no longer applicable, as they require
that local rotations can be applied in negligible time. The an
iSWAP can of course still be implemented by simply evolving
under the coupling, but to find time-optimal implementations
for other two-qubit gates we again apply the GRAPE algo-
rithm. This can be forced to optimize only over controls in a
certain amplitude or bandwidth range.26,29 Figure 6 contains
the fidelity vs pulse duration curves for two-qubit SWAP and
CNOT gates. Examples of the optimized controls obtained by
the GRAPE algorithm for the CNOT gate are provided in Fig.
7.

Observe that the CNOT gate is self-inverse and the two-
qubit Hamiltonian in Eq. �3� is real and symmetric. As we
described earlier,31 in such systems there may be palindromic
control sequences as in Fig. 7�a�. Their practical advantage
lies in the fact that they may be synthesized on LCR termi-
nals only using capacitances �C� and inductances �L� and no
resistive elements �R� thus avoiding losses. In contrast, since
the an iSWAP is only a fourth root of the identity, it is no
longer self-inverse, and therefore palindromic controls are
not to be expected �compare, e.g., Fig. 9.�

B. Three qubits with restricted controls

For three qubits coupled via two cavities we allow for
three local z controls and two x controls, with the Hamil-
tonian

FIG. 5. �Color online� Logarithmic negativity between qubit
pairs 1–2 �blue line� and 2–3 �red, dashed line� for �a� sequential
and �b� optimized implementations of an iSWAP13.

FIG. 6. �Color online� Maximum fidelity as a function of pulse
duration in the two-qubit realistic model for �a� a CNOT gate, and �b�
a SWAP gate. Maxima obtained with no restrictions on the controls
are shown in blue ���, while those obtained under the restrictions in
Eq. �4� are shown in red ���. The arrows indicate the minimal times
at which the threshold fidelity is achieved.

FIG. 7. �Color online� Sample controls obtained by the GRAPE
algorithm for the minimal-time implementation of a CNOT in the
two-qubit realistic model: �1 �red, dotted line�, �2 �green, dashed
line�, and � �blue, solid line� with �a� unrestricted controls, and �b�
restricted controls. Note that the time course of the controls in �a� is
perfectly palindromic as the controls may equally well be read for-
ward and backward in time.
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Hreal
�3� �t� =

�J

2
��1

x�2
x + �1

y�2
y + �2

x�3
x + �2

y�3
y�

+ ��12
x �t���1

x + �2
x� + ��23

x �t���2
x + �3

x�

+ �
i=1

3

��i
z�t��i

z.

Again we determine optimized controls numerically; fidelity
vs pulse duration curves are shown in Fig. 8, while sample
optimized controls for the restricted case �ii� are shown in
Fig. 9. Only the x restriction plays a role here as the z re-
striction is an order of magnitude larger. A comparison of
times in the sequential and optimized schemes under the re-
strictions in Eq. �4� is provided in Table II. The times in the
sequential scheme have increased, as each local 90° x rota-
tion now requires a time of 0.25 /�max=0.105 /J. The times
required by the optimized schemes also increase, but sub-
stantial speedups are still possible.

V. CONCLUSIONS

We have demonstrated how optimal control methods pro-
vide fast high-fidelity quantum gates for coupled supercon-
ducting qubits. In contrast to conventional approaches that
make use of the coupling evolutions sequentially �i.e., along
one dimension at a time�, numerical optimal control exploits
the coupling dimensions simultaneously thereby gaining sig-
nificant speedups. In particular, our numerical method pro-
vides constructive controls under realistic experimental con-
ditions, such as �i� power and rise-time limits in the control
amplitudes, �ii� additional individual detunings on each qu-
bit, and �iii� lack of phase switching and restriction to con-
trols affecting qubits jointly. We showed how the latter two
complement one another. Finally, our approach to providing
optimized controls tailored to the hardware of 2D cavity
grids scales to �2D� arrays of many qubits and arbitrary gate
operations between two generic qubits picked from such
grids. It is therefore anticipated to find wide application in
similar architectures of large-scale quantum systems used as
quantum simulators, processors, or storage devices.
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APPENDIX: NUMERICAL DETAILS

The gradients introduced in Sec. II B form the basis of our
numerical optimization algorithm, but there is still some
freedom in how they can be used to update the controls. The
simplest approach of adding the gradients directly to the con-
trols with some positive step size, as in Eq. �1�, is typically
not the most numerically efficient one. Here we replace the

TABLE II. Implementation times for a selection of direct and
indirect two-qubit gates in the realistic model with the control am-
plitudes restricted as described in case �ii�. Tseq is the time required
by decomposing the gate into two-qubit an iSWAPs and local opera-
tions; Topt is the time required by the numerically optimized pulse
to reach a fidelity of 1–10−3. The particular values for the minimal
times simply result from our choice for the maximum amplitude
relative to J.

Gate Tseq�1 /J� Topt�1 /J� Speedup factor

iSWAP12 0.50 0.50

CNOT12 1.21 0.90 1.34

SWAP12 1.82 0.80 2.28

iSWAP13 4.13 1.40 2.95

CNOT13 2.21 1.40 1.58

FIG. 8. �Color online� Maximum fidelity as a function of pulse
duration in the three-qubit realistic model for �a� a CNOT13 gate, and
�b� an iSWAP13 gate. Maxima obtained with no restrictions on the
controls are shown in blue ���, while those obtained under the
restrictions in Eq. �4� are shown in red ���. The arrows indicate the
minimal times at which the threshold fidelity is achieved.

FIG. 9. �Color online� Sample controls to implement an
iSWAP13 gate in the three-qubit realistic model with restrictions �ii�
in place: �a� �12

x �green, dashed line�, �23
x �blue, solid line�. �b� �1

z

�blue, solid line�, �2
z �green, dashed line�, and �3

z �red, dotted line�.
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conjugate-gradient updates of our standard routine26 by a
Newton method which makes use of the second derivative of
the quality function �the Hessian matrix�. Because we chose
to divide our evolution into M =256 constant intervals, this
results in a 256�256 Hessian matrix, direct computation of
which would be inefficient. Instead we use the standard
LBFGS algorithm to approximate the Hessian matrix by
analyzing successive gradient vectors.41,50

Inherent to these gradient-based methods is that they re-
sult only in a local maximum of the fidelity. To increase
confidence that optima close to the global maximum will be
obtained, we can sample from a range of random initial con-

trols. For the results presented in this paper we used the
following procedure:

�1� Randomly generate 50 initial controls and optimize
each in 100 iterations of the GRAPE algorithm.

�2� Select the highest 10 fidelities and iterate each a fur-
ther 500 times.

�3� Select the highest 2 fidelities and iterate each a further
1000 times.

This procedure is applied for a range of pulse durations,
yielding an estimate of the minimum time required to imple-
ment the given operation.
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